Jump to : Download | Abstract | Keywords | Contact | BibTex reference | EndNote reference |


G. Strangman, J. P. Culver, J. H. Thompson, D. A. Boas. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. NeuroImage, 17(2):719-731, 2002.


Download paper: (link)

Copyright notice:This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.


Near-infrared spectroscopy (NIRS) has been used to noninvasively monitor adult human brain function in a wide variety of tasks. While rough spatial correspondences with maps generated from functional magnetic resonance imaging (fMRI) have been found in such experiments, the amplitude correspondences between the two recording modalities have not been fully characterized. To do so, we simultaneously acquired NIRS and blood-oxygenation level-dependent (BOLD) fMRI data and compared Delta(1/BOLD) (approximately R(2)(*)) to changes in oxyhemoglobin, deoxyhemoglobin, and total hemoglobin concentrations derived from the NIRS data from subjects performing a simple motor task. We expected the correlation with deoxyhemoglobin to be strongest, due to the causal relation between changes in deoxyhemoglobin concentrations and BOLD signal. Instead we found highly variable correlations, suggesting the need to account for individual subject differences in our NIRS calculations. We argue that the variability resulted from systematic errors associated with each of the signals, including: (1) partial volume errors due to focal concentration changes, (2) wavelength dependence of this partial volume effect, (3) tissue model errors, and (4) possible spatial incongruence between oxy- and deoxyhemoglobin concentration changes. After such effects were accounted for, strong correlations were found between fMRI changes and all optical measures, with oxyhemoglobin providing the strongest correlation. Importantly, this finding held even when including scalp, skull, and inactive brain tissue in the average BOLD signal. This may reflect, at least in part, the superior contrast-to-noise ratio for oxyhemoglobin relative to deoxyhemoglobin (from optical measurements), rather than physiology related to BOLD signal interpretation


[ Adult ] [ Brain/*physiology ] [ Brain chemistry/*physiology ] [ Comparative study ] [ Data interpretation ] [ Statistical ] [ Diffusion ] [ Hemoglobins/metabolism ] [ Human ] [ Magnetic resonance imaging/*methods ] [ Oxygen/*blood ] [ Spectroscopy ] [ Near-infrared/*methods ] [ Support ] [ Non-u.s. gov't ] [ Support ] [ U.s. gov't ] [ Non-p.h.s. ] [ Support ] [ U.s. gov't ] [ P.h.s. ]


G. Strangman
J. P. Culver
J. H. Thompson
D. A. Boas

BibTex Reference

   Author = {Strangman, G. and Culver, J. P. and Thompson, J. H. and Boas, D. A.},
   Title = {A quantitative comparison of simultaneous {BOLD} f{MRI} and {NIRS} recordings during functional brain activation},
   Journal = {NeuroImage},
   Volume = {17},
   Number = {2},
   Pages = {719--731},
   Year = {2002}

EndNote Reference [help]

Get EndNote Reference (.ref)