Jump to : Download | Abstract | Contact | BibTex reference | EndNote reference |


J. Mattout, C. Phillips, W. D. Penny, M. D. Rugg, K. J. Friston. MEG source localization under multiple constraints: an extended Bayesian framework. Neuroimage, 30(3):753-67, 2006.


Download paper: (link)

Copyright notice:This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.


To use Electroencephalography (EEG) and Magnetoencephalography (MEG) as functional brain 3D imaging techniques, identifiable distributed source models are required. The reconstruction of EEG/MEG sources rests on inverting these models and is ill-posed because the solution does not depend continuously on the data and there is no unique solution in the absence of prior information or constraints. We have described a general framework that can account for several priors in a common inverse solution. An empirical Bayesian framework based on hierarchical linear models was proposed for the analysis of functional neuroimaging data [Friston, K., Penny, W., Phillips, C., Kiebel, S., Hinton, G., Ashburner, J., 2002. Classical and Bayesian inference in neuroimaging: theory. NeuroImage 16, 465-483] and was evaluated recently in the context of EEG [Phillips, C., Mattout, J., Rugg, M.D., Maquet, P., Friston, K., 2005. An empirical Bayesian solution to the source reconstruction problem in EEG. NeuroImage 24, 997-1011]. The approach consists of estimating the expected source distribution and its conditional variance that is constrained by an empirically determined mixture of prior variance components. Estimation uses Expectation-Maximization (EM) to give the Restricted Maximum Likelihood (ReML) estimate of the variance components (in terms of hyperparameters) and the Maximum A Posteriori (MAP) estimate of the source parameters. In this paper, we extend the framework to compare different combinations of priors, using a second level of inference based on Bayesian model selection. Using Monte-Carlo simulations, ReML is first compared to a classic Weighted Minimum Norm (WMN) solution under a single constraint. Then, the ReML estimates are evaluated using various combinations of priors. Both standard criterion and ROC-based measures were used to assess localization and detection performance. The empirical Bayes approach proved useful as: (1) ReML was significantly better than WMN for single priors; (2) valid location priors improved ReML source localization; (3) invalid location priors did not significantly impair performance. Finally, we show how model selection, using the log-evidence, can be used to select the best combination of priors. This enables a global strategy for multiple prior-based regularization of the MEG/EEG source reconstruction


J. Mattout
C. Phillips
W. D. Penny
M. D. Rugg
K. J. Friston

BibTex Reference

   Author = {Mattout, J. and Phillips, C. and Penny, W. D. and Rugg, M. D. and Friston, K. J.},
   Title = {M{EG} source localization under multiple constraints: an extended {B}ayesian framework},
   Journal = {Neuroimage},
   Volume = {30},
   Number = {3},
   Pages = {753--67},
   Year = {2006}

EndNote Reference [help]

Get EndNote Reference (.ref)